

SKY CHARTS

EVENING SKY FEBRUARY 25th at 21h30 (NORTH DOWN)

EVENING SKY FEBRUARY 25th 21h30 (SOUTH DOWN)

SUGGESTED EVENING OBSERVATION WINDOW

(Lunar observations notwithstanding)

DateMoonDusk endFebruary 20Rises23h27 (50%)21h30

to March 2 Sets 20h44 (6%) 21h00

THE SOLAR SYSTEM

PLEASE NOTE: all events are as predicted for HERMANUS, Western Cape, South Africa.

FEBRUARY HIGHLIGHTS from the 2025 SKY GUIDE

Date	Time (SAST)	Item
1	21h41	Moon (14%) and Venus (37%) set together
		Mercury furthest from Earth (1 412 au)
	21h54	Neptune (magn. +7.9) sets
2	04h03	Moon at perigee (367 457 km)
	00h06	Moon at ascending node
4		Callisto at maximum from Jupiter (9')
		Jupiter stationary
5	10h02	First quarter Moon
6	23h00	Moon (67%), Jupiter and the Pleiades within 12° on the western horizon
8		Jupiter stationary
		Moon northernmost $(+28, 6^{\circ})$
9	21h09	Moon passes 1.6° north of Mars
		Mercury at superior conjunction
	23h43	Moon (92%) dark limb occults i Gem (magn. +3.75), reappearance 00h41
12	15h53	Full Moon
		(29) Amphitrite at opposition (magn. +9.2)
		Callisto at maximum from Jupiter (9')
13		Moon (99%) passes 2.2° north of Regulus
15		Venus at greatest brilliancy (magn4.9)
	08h53	Moon at descending node
18	03h11	Moon at apogee (404 818 km)
19		Venus at perihelion
20	19h33	Last quarter Moon
		Callisto at maximum from Jupiter (9')
23		Moon southernmost ($+28$, 7°)
24		Mars stationary
28	02h45	New Moon
		Venus stationery

SOLAR SYSTEM VISIBILITY

2025 FEBRUARY 25 th				When visible?		
Sun Length of day	Aquarius 12 hours 57 minutes	Rise: Transit: Set:	06h27 12h56 19h24	Never look at the sun without SUITABLE EYE PROTECTION!		
Mercury Magnitude Phase Diameter	Aquarius -1.1 85% 6"	Rise: Transit: Set:	07h30 13h16 20h00	Low in the west after sunset		
Venus Magnitude Phase Diameter	Pisces -4.6 18% 46"	Rise: Transit: Set:	09h14 14h49 20h24	Evening		
Mars Magnitude Phase Diameter	Gemini -0.4 94% 11"	Rise: Transit: Set:	16h51 21h35 02h24	Morning		
Jupiter Magnitude Diameter	Taurus -2.3 40"	Rise: Transit: Set:	14h04 19h02 00h04	Evening		
Saturn Magnitude Diameter	Aquarius +1.1 16"	Rise: Transit: Set:	07h31 13h48 20h05	Low in the west after sunset		
Uranus Magnitude Diameter	aries +5.7 4"	Rises: Transit: Set:	12h36 17h45 22h54	Evening		
Neptune Magnitude Diameter	Pisces +8.0 2"	Rise: Transit: Set:	08h12 14h18 20h24	Low in the west after sunset		
Pluto Magnitude	Capricornus +14.5	Rise: Transit: Set:	03h36 10h45 17h54	Morning		

Phase: In a telescope, the inner planets (Mercury, Venus and Mars) appear to us in phases depending on the angle of the Sun's illumination, as does the Moon. The observed **angular diameter** is given in arc seconds.

Transit: When an object crosses the **local meridian**, it is said to 'transit'. The local meridian is an imaginary line from the horizon directly north passing overhead through the *zenith* to the horizon directly south.

Magnitude: we are accustomed to hearing stars described in terms of 'magnitude'. For example, the planet Jupiter at magnitude -1.8 is considerably brighter than the star Antares (in Scorpius) at +1.05. The scale is 'inverse'; the brighter the object, the lower the value. A 'good' human eye on a clear night can see down to a magnitude of about +6.

Rupes Recta

Location: Near the south-eastern "shore" of Mare Nubium.

Type: Also known as the 'Straight Wall', this is a most curious linear feature. Roughly on a vertical centreline of the Moon's face, about one-third of the way down from the southern pole, it is easily seen with a small telescope when the lighting is right. The escarpment thus has a fairly gradual slope making the timing of the observation fairly critical. Lighting is very important indeed. When the Sun is at the right angle, the Straight Wall becomes quite obvious. This fault scarp changes from a dark line to a bright one toward Luna noon.

Dimensions: 110 km long, 2 to 3 km wide, height 240 to 300 metres.

Notes: The crater Birt to the west is about 17 km in diameter. Further west is the Rima Birt rille.

Best seen: One day after First Quarter (6^{th} February) and at Last Quarter (20^{th} February).

Discovery: Christiaan Huygens in the 1770s.

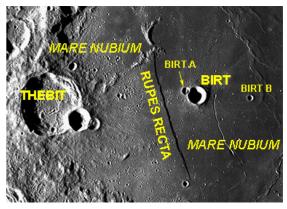


Image by Lunar Reconnaissance Orbiter

The next lunar eclipse, visible from southern Africa, is predicted for 28th August 2026

METEOR ACTIVITY

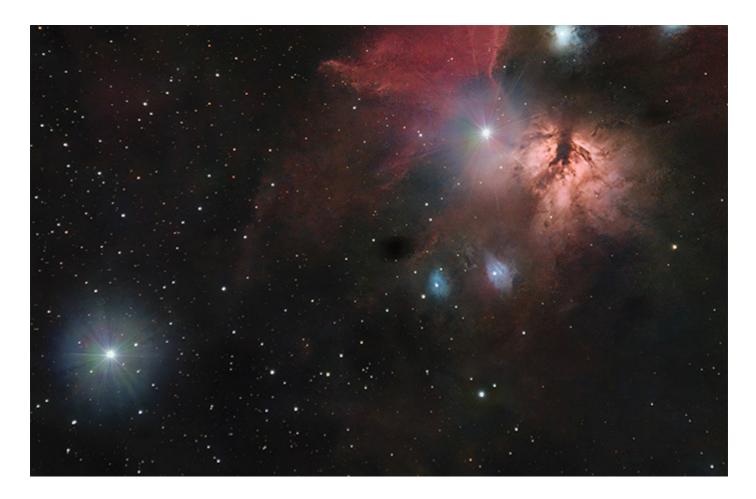
<u>From SGSA</u> <u>2025</u>	Maximum Date/Time	Moon on max Date/Time	Duration	Radiant	ZHR*	Velocity Km/sec
α Centaurids	February 9 22h00 – 03h30	89%	January 31 to February 20	Hadar (β Cen)	6	60
γ Normids	Mar 14 00h00 – 04h30	100%	February 25 To March 28	West of Antares	5	56

Observation prospects look poor for both of these showers; see CAMNotes from Tim Cooper below.

* ZHR is an ideal value. It is, by definition, the number of meteors a single observer could possibly see during a shower's peak with the radiant directly overhead on a clear, dark night. Most observers, however, will not see as many meteors as the ZHR suggests. Also, the presence of a bright moon, atmospheric conditions and the shower's proximity to the horizon can seriously diminish the observation of meteor activity.

COMETS, ASTEROIDS AND METEORS

From Tim Cooper


The latest observing circular, CAMNotes 2025 No.1, is online and gives details of observations required for January to March.

https://assa.saao.ac.za/wp-content/uploads/sites/23/2024/12/ASSA-CAMnotes-2025-Number-1.pdf

extract ... C/2024 G3 (ATLAS) ... the comet continues to fade quickly, and by January-end should be around magnitude +7-8, low above the south-western horizon located in the constellation of Piscis Austrinus. Note however, the brightness of the comet is hard to predict with any accuracy... (*it is reported that this comet may have disintegrated towards the end of January – ed.*)

HOME GROWN IMAGES

The Flame Nebula (NGC 2024)

Image by Derek Duckitt

- Imaging telescope / lens Sigma Lens 450-500 mm Lens 150-500 mm DG APO HSM
- Imaging camera Fujifilm X-T30 (CMOS)
- Mount Alt-azimuth tripod Sky Watcher HEQ5 Pro
- Guiding telescope / lens William Optics Refractor 32/120 mm Uniguide Scope
- Guiding camera ZWO Optical ASI 553 MC PRO (CMOS)
- Processed with Affinity Photo 2.5.7, Siril 1.2.4, Fujifilm XT-30 Android App, DeNoise (Topaz Labs) GraXpert AI, Photoshop 2025, PHD Guiding(Stark Labs)2
- Date Sat Jan 18th 2025
- Seeing 5 / 5
- Transparency 5 / 5
- Sky Darkness #4 Rural/suburban transition 6/9
- Ambient Temperature 21.0 °C
- Moon Age 18.8 Days
- Moon Phase Waning Gibbous

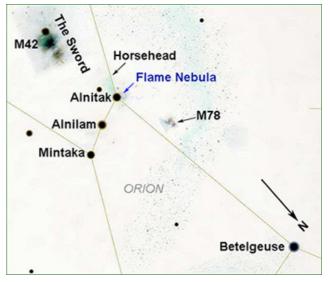
- Moon Illumination 83%
- ISO 1,600
- Lights 38 x 120 sec
- Darks 15 x 120 sec
- Flats 21 x 1/180 sec
- Bias 15 x 1/320000 sec
- Total lights integration time 1 hour 16 minutes

LOOKING UP

FLAME NEBULA NGC 2024, The Ghost of Alnitak

Description Constellation Distance Visual Magnitude Absolute magn. Diameter Apparent size J2000 Dec/RA Alt/Az Emission Nebula Orion 1350 LY, 410 pc +10.0 +3.01 7.1 LY, 2.2 pc 30 x 30 arcmin -1°50'31" / 5h41m43s +51°36'59" / 323°20'47"

Visibility on February 25th 2025


<i>Rises</i> 13h56	<i>Transits</i> 20h02		Sets 02h08		
Naked Eye Binoculars Telescopes		No Yes Yes			

Description

NGC 2024 is a beautiful emission nebula that covers a 30-arcminute area with patches of nebulosity cut by subtle dark bands and threads. A broad dust lane nearly bisects the nebula. A secondary dark lane runs from near the south end of the main rift into the eastern wing of the nebula. At least a dozen stars of magnitude 10 to 12 are embedded in the nebula.

The Flame Nebula is about 1350 light-years away, and is part of the Orion Molecular Complex, a star-forming region that includes the famous Horsehead Nebula. NGC 2024 is ionized and made to luminesce by the easternmost star in Orion's Belt, **Alnitak** (ζ Ori). The Flame Nebula glows in a variety of colours, from yellow to orange, though the predominant hue is shellpink.

The nebula is illuminated by ultraviolet light from the nearby star **Alnitak**.

The chart above is timed for 25th February at 21h30

Star Formation

Stars are often born in clusters in giant clouds of gas and dust. Astronomers have studied two star clusters using NASA's Chandra X-ray Observatory and infrared telescopes and the results show that the simplest ideas for the birth of these clusters cannot work, as described in our latest press release. A study of NGC 2024 and the Orion Nebula Cluster, another region where many stars are forming, suggests that the stars on the outskirts of these clusters are older than those central regions. This is different from what the simplest idea of star formation predicts where stars are born first in the centre of a collapsing cloud of gas and dust when density is large enough.

Explanations for the new findings can be grouped into three broad categories. The first is that star formation is continuing to occur in the inner regions. This could have happened because the gas in the outer regions of the star forming cloud is thinner and more diffuse than in the inner regions. Over time, if the density falls below a threshold value where it can no longer collapse to form stars, star formation will cease in the outer regions whereas stars will continue to form in the inner regions, leading to a concentration of younger stars there.

Discovery and History

This splendid object was discovered on 1st January 1786 by German-born British astronomer **William** Herschel.

Observation

NGC 2024, part emission nebula and part reflection, located close to Alnitak in Orion. It is often considered to be a test piece of observation to determine if transparency conditions are suitable enough for an attempt on IC434 and B33. This fairly large nebula consists of a central dark passage from which radiate branches forming a sequence of lobes. It is a challenging object to observe, not least due to the proximity of Alnitak. It also requires a different approach along with all difficult deep sky subjects. Time and patience, dark sky, dark adaptation and very good transparency conditions are required. A filter might assist a little, such as Lumicon Deep Sky type or a UHC, keeping Alnitak out of the field of view and increasing the magnification to gain in contrast.

The author continues, "Past encounters have provided varying observational outcomes. I have used 21 mm, 13 mm, 10 mm ultra wide / wide field eyepieces on the subject, x 76, x 123, x 160, I have also scrutinised this area with 20 mm and 25 m Plössls and observations have been made with and without filter. What are your thoughts, descriptive observational outcomes in pursuing the subject and at what magnification and eyepiece seemed to provide optimum performance?"

Read more on this site:

https://stargazerslounge.com/topic/302069-the-flame-nebula-eyepiece-and-magnification/

[all the more credit to Derek for his stellar achievements -ed.]

Please keep in touch...

Have a look at our excellent website, edited by Derek Duckitt. https://www.hermanusastronomy.co.za/

Contact ASSA - Get in touch with officers of the Society - we're real people with a passion for astronomy, <u>so contact</u> <u>us and let's talk</u>!

http://www.mnassa.org.za/

With Grateful thanks to the following:

2025 Sky Guide Southern Africa Sky Safari Stellarium The Practical Skywatcher's Handbook Tim Cooper Wikipedia

Edited by Peter Harvey - petermh@hermanus.co.za