Scientists unveiled a ready-made method for detecting the collision of stars with an elusive type of black hole.
By Princeton University, Princeton, New Jersey — Published: September 22, 2011
Princeton and New York University researchers have simulated the effect of a primordial black hole passing through a star. Primordial black holes are among the objects hypothesized to make up dark matter — the invisible substance thought to constitute much of the universe — and astronomers could use the researchers’ model to finally observe the elusive black holes. This image illustrates the resulting vibration waves as a primordial black hole (white dots) passes through the center of a star. The different colors correspond to the density of the primordial black hole and strength of the vibration. Credit: Tim SandstromScientists looking to capture evidence of dark matter — the invisible substance thought to constitute much of the universe — may find a helpful tool in the recent work of researchers from Princeton University in New Jersey and New York University (NYU).
The team unveiled a ready-made method for detecting the collision of stars with an elusive type of black hole, which is on the short list of objects believed to make up dark matter. Such a discovery could serve as observable proof of dark matter and provide a much deeper understanding of the universe’s inner workings.
Researchers Shravan Hanasoge from Princeton and Michael Kesden from NYU simulated the visible result of a primordial black hole passing through a star. Theoretical remnants of the Big Bang, primordial black holes possess the properties of dark matter and are one of various cosmic objects thought to be the source of the mysterious substance, but they have yet to be observed.
If primordial black holes are the source of dark matter, the sheer number of stars in the Milky Way galaxy — roughly 100 billion — makes an encounter inevitable. Unlike larger black holes, a primordial black hole would not “swallow” the star, but instead cause noticeable vibrations on the star’s surface as it passes through.
Thus, as the number of telescopes and satellites probing distant stars in the Milky Way increases, so do the chances to observe a primordial black hole as it slides harmlessly through one of the galaxy’s billions of stars, Hanasoge said. The computer model developed by Hanasoge and Kesden can be used with these current solar-observation techniques to offer a more precise method for detecting primordial black holes than existing tools.
“If astronomers were just looking at the Sun, the chances of observing a primordial black hole are not likely, but people are now looking at thousands of stars,” Hanasoge said.
“There’s a larger question of what constitutes dark matter, and, if a primordial black hole were found, it would fit all the parameters — they have mass and force so they directly influence other objects in the universe, and they don’t interact with light. Identifying one would have profound implications for our understanding of the early universe and dark matter.” ………