This artist's impression shows schematically the mysterious alignments between the spin axes of quasars and the large-scale structures that they inhabit that observations with ESO’s Very Large Telescope have revealed. These alignments are over billions of light-years and are the largest known in the universe.
The large-scale structure is shown in blue and quasars are marked in white with the rotation axes of their black holes indicated with a line.
This picture is for illustration only and does not depict the real distribution of galaxies and quasars.
ESO/M. Kornmesser
A research team has found that the rotation axes of the central supermassive black holes in a sample of quasars are parallel to each other.
New observations with the European Southern Observatory’s Very Large Telescope (VLT) in Chile have revealed alignments of the largest structures ever discovered in the universe. A European research team has found that the rotation axes of the central supermassive black holes in a sample of quasars are parallel to each other over distances of billions of light-years. The team also has found that the rotation axes of these quasars tend to be aligned with the vast structures in the cosmic web in which they reside.
Quasars are very active supermassive black holes at the nuclei of galaxies. These black holes are surrounded by spinning disks of extremely hot material that is often spewed out in long jets along their axes of rotation. Quasars can shine more brightly than all the stars in the rest of their host galaxies put together.
A team led by Damien Hutsemékers from the University of Liège in Belgium used the FORS instrument on the VLT to study 93 quasars that were known to form huge groupings spread over billions of light-years, seen at a time when the universe was about one-third of its current age.
“The first odd thing we noticed was that some of the quasars’ rotation axes were aligned with each other, despite the fact that these quasars are separated by billions of light-years,” said Hutsemékers.
The team then went further and looked to see if the rotation axes were linked, not just to each other, but also to the structure of the universe on large scales at that time.
When astronomers look at the distribution of galaxies on scales of billions of light-years, they find that they are not evenly distributed. They form a cosmic web of filaments and clumps around huge voids where galaxies are scarce. This intriguing and beautiful arrangement of material is known as large-scale structure.